On the boundary value problem $u”+u=\alpha u\sp{-}+p(t),$ $u(0)=0=u(\pi )$

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On boundary value problem for fractional differential equations

In this paper‎, ‎we study the existence of solutions for a‎ ‎ fractional boundary value problem‎. ‎By using critical point theory‎ ‎ and variational methods‎, ‎we give some new criteria to guarantee‎ ‎ that‎ ‎ the problems have at least one solution and infinitely many solutions.

متن کامل

On Bernoulli Boundary Value Problem

We consider the boundary value problem:    x (m) (t) = f (t, x(t)), a ≤ t ≤ b, m > 1 x(a) = β 0 ∆x (k) ≡ x (k) (b) − x (k) (a) = β k+1 , continuous at least in the interior of the domain of interest. We give a constructive proof of the existence and uniqueness of the solution, under certain conditions, by Picard's iteration. Moreover Newton's iteration method is considered for the numerical ...

متن کامل

Solvability of an impulsive boundary value problem on the half-line via critical point theory

In this paper, an impulsive boundary value problem on the half-line is considered and existence of solutions is proved using Minimization Principal and Mountain Pass Theorem.

متن کامل

Remarks on an overdetermined boundary value problem

We modify and extend proofs of Serrin’s symmetry result for overdetermined boundary value problems from the Laplace-operator to a general quasilinear operator and remove a strong ellipticity assumption in [9] and a growth assumption in [5] on the diffusion coefficient A, as well as a starshapedness assumption on Ω in [4]. Mathematics Subject Classification (2000). 35J65, 35B35

متن کامل

On a Nonlinear Elliptic Boundary Value Problem

Consider a bounded domain G C R (_N>1) with smooth boundary T . Let L be a uniformly elliptic linear differential operator. Let y and ß be two maximal monotone mappings in R. We prove that, when y ? 2 satisfies a certain growth condition, given f £ L (G ) there is u € H (G) such that Lu + y(u) 3 f a.e. on G, and -du/d v e ß(u\ ) a.e. on T, where du/civ is the conormal derivative associated with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1978

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1978-0466707-3